Title

Retreat, detour, or advance? Understanding the movements of birds confronting the Gulf of Mexico

Author Information

Theodore J. Zenzal J. ${ }^{1,2,3^{*}}$, Michael P. Ward ${ }^{3}$, Robert H. Diehl ${ }^{4}$, Jeffrey J. Buler ${ }^{5}$, Jaclyn Smolinsky ${ }^{5 \ddagger}$, Jill L. Deppe ${ }^{6}$, Rachel T. Bolus ${ }^{7}$, Antonio Celis-Murillo ${ }^{8}$, and Frank R. Moore ${ }^{2}$
${ }^{1}$ U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA
${ }^{2}$ School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS
${ }^{3}$ Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL
${ }^{4}$ U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT
${ }^{5}$ Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE
${ }^{6}$ National Audubon Society, Washington, D.C.
${ }^{7}$ Department of Biology, Southern Utah University, Cedar City, UT
${ }^{8}$ U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD

*Corresponding author: 700 Cajundome Blvd., Lafayette, LA 70526; 337-2668645; tzenzal@usgs.gov
${ }^{\ddagger}$ Current address: Cherokee Nation System Solutions, contracted to the U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA

Abstract

During migration, birds must locate stopover habitats that provide sufficient resources to rest and refuel while en route to the breeding or nonbreeding area. Long-distance migrants invariably encounter inhospitable geographic features, the edges of which are often characterized by habitat limited in food and safety. In response, they often depart in directions inconsistent with reaching their destination, presumably searching for better habitat. We used automated radio telemetry to track 442 individuals of five species to investigate the behavior of migratory birds as they departed edge habitat along the northern Gulf of Mexico coast during autumn from 2008-2014. Most migrants (75%) retreated inland or detoured around rather than advanced across the Gulf, but this depended on bird species and fat-based energy stores. Most individuals in lean condition or of smaller bodied species tended to retreat or detour, rather than advance, when departing from the coast. Twenty-one percent of all birds that departed the coast in 2013-2014 were redetected over 45 km inland, providing a unique opportunity to compare stopover duration,

departure times, and travel speeds between migrants that retreat away from the coast and those that continue to advance toward their destination. Individuals that retreated the coast and were redetected inland spent ~ 1 day on the coast before retreating inland, where they spent 11 days before resuming migration. Further when those same individuals retreated from the coast, they departed around evening civil twilight, whereas those that advanced from inland habitats departed after evening civil twilight. Travel speeds were slower for individuals retreating inland compared to those advancing towards the coast from inland habitats. The differences between retreating and advancing individuals suggest how an individual's drive to feed or fly influences behavior. Our study illustrates how the sum of individual decisions can shape habitat use, landscape-scale movements, and migration strategies.

Keywords: reverse migration, reoriented dispersal, landscape-scale movements, Alabama, stopover, automated radio telemetry

Introduction

Most birds that migrate thousands of kilometers between their breeding and non-breeding areas must stopover en route, where they rest and refuel to survive the journey. Locating habitat where migrants can safely and efficiently sustain or gain a favorable energetic state (i.e., increase fat stores) needed to resume migration in a timely fashion is critical but challenging, especially along the edge of a large geographical feature (e.g., oceans, mountains, or deserts) where opportunities to stopover are limited (Brooks 1952, Alerstam and Lindström 1990, Sandberg and Moore 1996, Strandberg et al. 2009, Alerstam 2011, Deppe et al. 2015, Moore 2018, Ward et al. 2018). Depending on the direction of travel, habitat at the edge of inhospitable geographic features (hereafter "edge sites") represent the last possible place to stopover before an individual must negotiate a crossing of the non-habitat feature or the first possible landfall after a non-stop flight. Migrants departing edge sites often select departure directions inconsistent with progress toward their breeding or nonbreeding destination (Alerstam 1978, Åkesson et al. 1996, Åkesson 1999, Smolinsky et al. 2013, Woodworth et al. 2014, Deppe et al. 2015, Nilsson and Sjöberg 2016). Coastlines, for example, are often characterized as habitat-poor landscapes with high concentrations of migrants, which leads to reduced habitat
quality (Abdollahi et al. 2005, Mehlman et al. 2005, Schaub et al. 2008, Buler and Moore 2011, Lain et al. 2017) in terms of increased predation pressure (Aborn 1994, Cimprich et al. 2005, Woodworth et al. 2014) and competition for food (Moore and Yong 1991, Zenzal and Moore 2019). Ultimately, if individuals are unable to adequately prepare for a long distance flight in edge habitats, then they will have a lower survival probability when attempting to cross the potential barrier (Erni et al. 2003, Ward et al. 2018). Individuals unable to directly advance (i.e., move directly towards the final migration destination) from the edge site must either retreat from (i.e., move away from the edge) or detour around (i.e., move parallel to the edge) the inhospitable geographic feature.

Decisions about when and in what direction to leave a stopover site reflect an individual's readiness to resume migration and are often influenced by extrinsic factors, such as habitat described above and weather, or intrinsic factors such as energetic condition, species, and age (Hake et al. 2003, Smolinsky et al. 2013, Sjöberg et al. 2015, Deppe et al. 2015, Dossman et al. 2016, Nilsson and Sjöberg 2016; but see Zenzal et al. 2018a). In terms of energetic condition, individuals with substantial fat stores orient in an advancing direction (i.e., south), consistent with migrating to their non-breeding range, while lean individuals tend to orient in directions indicative of detouring or retreating (i.e., east/west or north, respectively; Sandberg and Moore, 1996; Sandberg et al., 2002; Nilsson and Sjöberg 2016). Species-dependent decisions may also occur considering poorer flight performance related to smaller body size allows
for a lower margin of error when negotiating long-distance, non-stop flights (Buler et al. 2017), which may suggest that smaller bodied species would choose to detour or retreat. Age-dependent migratory decisions reveal that young birds tend to show more variation in migratory routes compared to adults (Hake et al. 2003, Agostini 2004) and tend to be less efficient at foraging, impacting energetic condition (Gauthreaux 1978, Burger 1988, Wunderle 1991, Woodrey 2000, but see Moore et al. 2003). While intrinsic factors that describe an individual's disposition (e.g., age, species) are generally inflexible within a season, other factors, such as energetic condition and habitat quality, allow individuals to change the circumstances (e.g., find nearby habitat with more food) and increase their readiness to resume migration and advance.

Readiness is especially evident at an edge of inhospitable features and can be described as a dichotomy between states of feeding or flying (i.e., Zugdisposition or Zugstimmung; sensu Groebbels 1928, Rappole and Warner 1976, Schaub et al. 2008, Mills et al. 2011, Taylor et al. 2011, Chernetsov 2012, Cohen et al. 2014, Woodworth et al. 2014). The feeding state is characterized by habitat assessment, longer stopover duration at a landscape scale, diurnal fat deposition, slower travel speeds, and departure in a direction inconsistent with advancing while searching for additional foraging opportunities at a landscape scale (Alerstam 1978, Sandberg and Moore 1996, Moore and Aborn 2000, Chernetsov 2006, Mills et al. 2011, Taylor et al. 2011, Cohen et al. 2012, Smolinsky et al. 2013, Woodworth et al. 2014, Dossman et al. 2016, 2018,

Ferretti et al. 2019, Schmaljohann and Klinner 2020). Feeders eventually transition to a state of migratory flight, which is characterized by higher travel speed, minimal stopover duration, advancing directly towards the final migration destination, especially when weather conditions are supportive (Rappole and Warner 1976, Dingle 1996, Bruderer and Liechti 1998, Smolinsky et al. 2013, Deppe et al. 2015, Dossman et al. 2016, 2018, Nilsson and Sjöberg 2016, Packmor et al. 2020, Schmaljohann and Klinner 2020). Moreover, nocturnally migrating flyers are: 1) less likely to move during the day (i.e., sleep instead of forage), 2) engage in quiescence and orientation behaviors before departing, and 3) depart stopover sites early at night between sunset and astronomical twilight to take advantage of improved directional information, atmospheric stability, and lower predation risk (Moore 1987, 2018, Kerlinger and Moore 1989, Moore and Aborn 2000, Newton 2008, Németh 2009, Cohen et al. 2012, Covino and Cooney 2015, Dossman et al. 2016, 2018, Schofield et al. 2018a, b, Packmor et al. 2020).

Transitions between feeder and flyer, which occur throughout migration, are likely attributed to the cyclical interplay between circumstance, condition, state, and behavior, which can be magnified or diminished by context. For example, circumstance may place an individual in lean condition at a food poor, edge site with high competition and predation risk. The internal state of this lean individual is to feed but circumstances may prevent or limit foraging opportunities and so the individual changes its behavior to relocate to a higher quality stopover
site, which may be inconsistent with advancing. Now with circumstances changed, the lean bird is at a food rich, interior stopover site with lower competition and predation risk relative to the edge site. The bird, now able to satisfy the need to feed, changes condition by increasing fuel stores and in turn becomes motivated to fly and advance towards the migratory destination. While this process occurs continually throughout migration, the context of being at an edge site paired with inflexible internal factors, such as age or species, can exacerbate all aspects of this cycle given the high energy demand for flight across the inhospitable landscape.

We radio-tagged 5 species of migratory bird at an edge site to investigate decisions related to the internal states of feeding and flying during autumn migration by tracking behaviors with an array of automated radio telemetry (ART) systems on the northern coast of the Gulf of Mexico. We hypothesize that departure decisions are influenced by species, age, and fat load. We predict smaller species, individuals carrying lower fuel stores, or those on their first migration are not ready to resume migration from an edge site and will tend to retreat or detour rather than advance (i.e., transition to migratory flight). We also hypothesize that feeders retreating lower quality, edge sites differ from flyers advancing from higher quality, interior sites with respect to departure time, travel speed, and stopover duration. We predict feeders retreating from edge sites will depart later in the evening, travel slower (i.e., a more tortuous route), and have stopped over for shorter compared to flyers advancing from interior sites. We
also test the underlying assumption that interior habitats are higher quality than edge habitat by predicting that food resources are higher at interior sites.

Materials and Methods

Study sites

Edge site - Our edge site was at the Bon Secour National Wildlife Refuge $\left(30^{\circ} 10^{\prime} \mathrm{N}, 88^{\circ} 00^{\prime} \mathrm{W}\right.$; Figure 1 C) located approximately 2 km from the end of the Fort Morgan Peninsula, Alabama, USA in coastal dune-forest habitat. The Fort Morgan Peninsula, which is a 1 km wide strip of land between Mobile Bay and the Gulf of Mexico, represents the last stopover habitat before some individuals advance across the Gulf of Mexico during autumn. The site is composed primarily of oaks (Quercus sp.), hollies (Ilex sp.), greenbrier (Smilax spp.), grapevine (Vitis sp.), wax myrtle (Myrica cerifera), bay (Persea sp.), saw palmetto (Serenoa repens), sand heath (Ceratiola ericoides), and pines (Pinus sp.; see Zenzal et al. 2013 for a complete description of the habitat). Many migrants at this site tend to have short stopover durations and do not substantially refuel on the available fruit and arthropod resources (Woodrey and Moore 1997, Smolinsky et al. 2013, Deppe et al. 2015, Zenzal and Moore 2016, Zenzal et al. 2018a).

Interior site - Our interior site was in the Jacinto Port Wildlife Management Area ($30^{\circ} 48^{\prime} \mathrm{N}, 88^{\circ} 02^{\prime} \mathrm{W}$: at Tower 6 in Figure 1 B) just east of Saraland,

Alabama, USA. The extensive, contiguous upland and bottomland hardwood forests located in the Five Rivers Delta area is $\sim 50 \mathrm{~km}$ north of the Gulf of Mexico and where the Mobile, Spanish, Tensaw, Apalachee, and Blakeley Rivers flow into Mobile Bay. This site is dominated by sweetgum (Liquidambar styraciflua), American beautyberry (Callicarpa americana), pines, oaks, hollies, grapevine, greenbrier, and dwarf palmetto (Sabal minor). Similar habitats harbor large numbers of migrants and are rich in food resources (Buler et al. 2007), suggesting it is a potentially high-quality site.

Bird captures

We captured birds at a long-term migration monitoring station located at our edge site during autumn (25 August to 1 November) 2008 to 2014, except temporarily during a U.S. government shutdown (1-13 October 2013) which precluded access to our study site (we were also unable to sample fruit and arthropods, see below, at this site during the same period). We operated a station of 30 nylon mist nets (12 or $6 \mathrm{~m} \times 2.6 \mathrm{~m}$ with 30 mm mesh) from just before sunrise until approximately noon (Central Daylight Time [CDT]), barring unfavorable weather that might prevent the safe operation of nets. We banded each individual with a unique U.S. Geological Survey metal band, aged individuals as hatch-year (HY; hatched that summer) or after hatch-year (AHY; hatched a previous year) according to Pyle (1997), assessed muscle and fat (Helms and Drury 1960, Bairlein 1995), and measured unflattened wing chord $(0.5 \mathrm{~mm})$ and mass (nearest 0.1 g with an electronic balance). We classified
visible subcutaneous fat in individuals based on a 0-5 fat scoring system (Helms and Drury 1960).

We affixed a small radio transmitter to 473 individuals from the following five species: indigo bunting (Passerina cyanea, $n=39 ; 97 \% \mathrm{HY}$), red-eyed vireo (Vireo olivaceus, $\mathrm{n}=151 ; 63 \% \mathrm{HY}$), ruby-throated hummingbird (Archilochus colubris, $\mathrm{n}=55 ; 100 \% \mathrm{HY}$), Swainson's thrush (Catharus ustulatus, $\mathrm{n}=177$; 65% HY), and wood thrush (Hylocichla mustelina, $n=51 ; 88 \%$ HY). We assume all individuals were captured the day of arrival due to the high turnover rate of migrants previously described at this site (Woodrey and Moore 1997, Smolinsky et al. 2013, Deppe et al. 2015, Zenzal and Moore 2016, Zenzal et al. 2018a). All species are considered long-distance, neotropical migrants (sensu Carlisle et al. 2004, DeGraaf and Rappole 1995, Zenzal et al. 2018b) that breed in temperate North America and winter primarily south of the Tropic of Cancer (for more details see: Cimprich et al. 2018, Evans et al. 2011, Mack and Yong 2000, Payne 1992, Weidensaul et al. 2019). All animal research activities were approved by the University of Southern Mississippi institutional animal care and use committee (IACUC; protocol number 11092210), University of Illinois IACUC (protocol number 15154), U.S. Geological Survey Bird Banding Laboratory (permit number 21221), and the Bon Secour National Wildlife Refuge. Automated radio telemetry, transmitters, and telemetry data

We established a network of automated radio telemetry (ART) systems using automated receiving units from JDJC Corp (Fisher, Illinois, USA). We used the signal strength, noise, pulse width, and pulse interval data to determine the departure and arrival behavior of radio-tagged individuals. The transmitters used on the five focal species varied in weight, battery life, and were made by different companies (see Supplementary Information for details). We do not suspect the weight of the transmitter to significantly impact the behaviors observed given that flight behaviors of the smallest species tagged, ruby-throated hummingbirds, did not differ in an aviary with or without the transmitters we used in this study (Zenzal et al. 2014). The automated system along the Gulf's edge used different antennas than the interior system. The two systems were thus slightly different in terms of the resolution of the bearing estimates and gain of the antennas. While we could triangulate and estimate the tracts of departing individuals, for the purpose of this study we used vanishing bearing as the metric to determine if an individual was advancing, detouring, or retreating. As an example, we triangulated a few individuals to provide a visual representation of the departure behavior and their "retreat" north (Figure 1B; see supplementary information for further details).

Food Sampling

In 2013 and 2014, we sampled fruit and arthropods along transect(s) within the telemetry detection area of each site (interior site: one transect totaling 375 m in length to sample the bottomland forested habitat [located near "Tower

6" in Figure 1B]; edge site: two transects totaling 725 m in length to sample the scrub and pine habitats [located at "Banding Station" in Figure 1C]). Once a transect was established we marked all plants that were within 2 m of the transect center line and fruiting between 25 August and 9 September at the start of each season. Fruit sampling involved counting all the ripe fruit once a week between 2 September and 28 October on the marked plants. Marked plants included: 1) peppervine (Ampelopsis arborea), dahoon holly (Ilex cassine), inkberry (I. glabra), yaupon holly (I. vomitoria), gopher apple (Licania michauxii), wax myrtle, red bay (P. borbonia), chokecherry (Prunus virginiana), winged sumac (Rhus copallinum), saw palmetto, greenbrier, and blueberry (Vaccinium $s p$.) at the edge site and 2) American beautyberry, American holly (I. opaca), yaupon holly, dwarf palmetto (Sabal minor), and sparkleberry (Vaccinium arboreum) at the interior site. Arthropod sampling took place at 8 points, spaced 50 m apart, along each transect ($\mathrm{n}=16$ points at the coastal site; $\mathrm{n}=8$ points at the inland site). Every three days between 3 September and 30 October we surveyed arthropods at each location once in the afternoon (~15:00 CDT); if high winds or precipitation interfered with sampling we conducted surveys on the next available day. At the start of the season, we selected similarly sized oak tree branches from the nearest oak tree at each point along the transect from which to sample arthropods throughout the season. We carefully covered the branch with a pillowcase, closed the end around the branch, shook the branch vigorously for approximately 30 seconds, and then counted the arthropods inside the
pillowcase classifying them by taxonomic order and 1 mm size class before releasing them alive. We then used previously published length-weight regression equations to calculate arthropod biomass (see Johnson and Strong 2000, Strong and Sherry 2000).

Statistics

Departing the Edge

To test the prediction of our first hypothesis related to how conditions such as species, age, and fat load influence behavior when circumstance places an individual at an edge site within the context of negotiating a $1,000 \mathrm{~km}$, non-stop flight, we classified departure directions from the edge site into three discreet groups: advancing (south $\left.=135-224^{\circ}\right)$, detouring (east $=45-134^{\circ}$ or west $=$ $225-314^{\circ}$; i.e. individuals were roughly following the coast), and retreating (north $=\geq 315^{\circ}$ or $<45^{\circ}$; Figure S1). Individuals advancing upon departure illustrate the flyer state (i.e., resuming migration), individuals retreating upon departure are considered to be in a feeder state, and those detouring upon departure have discontinued the direct route to the non-breeding grounds but may be exhibiting either the feeder or flyer state. For all tagged individuals, we analyzed departure group membership using an information theoretic approach to determine which factors influence departure direction. We used Akaike's information criterion $\left(\mathrm{AIC}_{\mathrm{c}}\right.$; Burnham and Anderson 2002) with a multinomial logistic regression to determine if age (HY or AHY), fat score (0-5), or bird species, factors typically related to departure decisions (e.g., Deppe et al. 2015,

Nilsson and Sjöberg 2016, Sandberg and Moore 1996, but see Zenzal et al. 2018a), influenced departure direction. We created 14 candidate models (Table 1), all of which, excluding the null model, included year as a random factor. We tested the null model (no variables), single-variable models, global models (all variables, additive and interactive), as well as specific variable combinations in additive and interactive models (see Table 1). We considered models with a $\Delta \mathrm{AIC}_{\mathrm{c}} \leq 2$ as receiving the strongest support based on the data and determined the best model based on the calculated weight and parsimony of each model (Burnham and Anderson 2002).

Comparing Retreating to Advancing

To test the prediction of our second hypothesis comparing behaviors of feeders and flyers, we analyzed data on individuals tagged at the edge site and later detected at an ART system north of Mobile Bay. For any individual detected by an ART system at the interior site (hereafter "redetected individuals", $n=42$), we calculated departure time (defined as the number of hours before or after civil twilight based on expected departure times; Deppe et al. [2015], Moore and Kerlinger [1992], and Smolinsky et al. [2013]), northbound and southbound travel speed (meters per second [$\mathrm{m} / \mathrm{s}]$), as well as the number of days (stopover duration) at the edge and interior sites when possible. We estimated travel speed by determining the time when the signal strength indicated the bird was directly east or west of the tower and dividing the amount of time it took for an individual to move in an assumed straight path between the coastal towers and either tower

5 or 6 (see Figure 1B). We pooled data across species for analyses of redetected individuals in order to maximize our sample size. Two variables did not conform to a normal distribution based on a Shapiro-Wilk Test ($p<0.05$), therefore we transformed departure time (paired samples only) and travel speed (independent samples only) of redetected individuals with the natural logarithm (natural logarithm +1 for departure time) in order to fit the data to a normal distribution. Stopover duration of redetected individuals did not conform to a normal distribution after performing log and square root transformations, necessitating the use of non-parametric statistics. We used a paired t-test or Wilcoxon signedrank test to determine if the response variable changed between sites. However, given the low sample sizes of pairwise data captured by our ART network (range of $n=9-20$), we also performed an independent t-test or Mann Whitney U test to characterize differences between individuals at the two sites. The independent test is likely to be more conservative in its test of significant differences between sites.

Given the possibility that detected differences in travel speeds between northbound and southbound flights could be due to wind conditions aloft, we analyzed wind speed and direction of redetected individuals with data on flights north and south $(\mathrm{n}=20)$. We used this approach rather than assessing flow assistance (e.g., Kemp et al. 2012) as we cannot predict the desired bearing of retreating individuals and do not know where individuals outside of our detection area originate from, but rather simply illustrate that wind conditions aloft are not
different between advancing and retreating flights. We obtained weather data from Dauphin Island, $\mathrm{AL}\left(\mathrm{ID}: 994420 ; 30^{\circ} 15^{\prime} \mathrm{N}, 88^{\circ} 4^{\prime} \mathrm{W}\right.$) and averaged conditions from within 2 hours of an individual's departure time (hour of departure ± 1 hour). We used a generalized linear model (GLM) with a binomial distribution and selected flight direction (retreat or advance) as the response variable; fixed factors included speed (m / s) and cardinal direction (as defined above) of surface winds as well as their interaction. We determined significant differences between flight directions using a Wald test.

Food Abundance

We tested the expected difference in food abundance by recording the weekly mean number of ripe fruit/m or mean arthropod biomass at each sampling period, between sites using generalized linear mixed models (GLMMs). For each response variable, we used a Gaussian distribution and selected site as a fixed factor; day of year nested within year was a random factor. We determined significance of variables in our GLMMs using a Wald test and 95% confidence intervals. We followed up our analysis of arthropod biomass with a Hedge's g test to determine differences in magnitude (i.e., the effective difference) between the two sites.

Software

We performed all statistics in the R statistical language (version 3.5.1; R Core Team 2018). To run multinomial regression models, we used package
"nnet" (Venables and Ripley 2002) and then calculated $\Delta \mathrm{AIC}_{\mathrm{c}}$ and $\mathrm{AIC}_{\mathrm{c}}$ weights using package "AICcmodavg" (Mazerolle 2017). For linear models (GLMM/GLM), we used packages: "MASS" (Venables and Ripley 2002), "nlme" (Pinheiro et al. 2018), "car" (Fox and Weisberg 2011), and "gmodels" (Warnes et al. 2018). We used package "effsize" to perform the Hedge's g test (Torchiano 2017).

Results

Departing from the Edge

We found that of all the radio-tagged individuals ($n=442$), most (75\%) did not advance when departing the edge site. The majority of individuals ($n=184$; 42\%) departed in a direction parallel to the Gulf of Mexico consistent with detouring (i.e., east or west). The second most frequent departure direction was retreating from the Gulf of Mexico (i.e., north; $n=146 ; 33 \%$). The least number of individuals ($\mathrm{n}=112 ; 25 \%$) departed over the Gulf of Mexico consistent with advancing toward the non-breeding grounds (i.e., south). We were unable to estimate the departure direction for 31 (5 indigo buntings, 6 red-eyed vireos, 3 ruby-throated hummingbirds, 16 Swainson's thrushes, and 1 wood thrush) of the 473 radio-tagged individuals due to transmitter failures and errors in programing the ARTs to search for a specific frequency.

Results from our $\mathrm{AIC}_{\mathrm{c}}$ approach to test the prediction of our first hypothesis related to the conditions of age, species, and fat load on departure direction found one model with sufficient support ($\Delta \mathrm{AIC} \mathrm{C}_{\mathrm{c}}<2$; $\mathrm{w}_{\mathrm{i}}=0.86$), which
was the additive model between bird species and fat score (Table 1). From a species standpoint, detouring along the coast was the most frequent departure direction for the two smallest species examined, indigo buntings (74\%) and rubythroated hummingbirds (77\%), and the least frequent direction for wood thrush (22\%). Individuals retreating toward inland habitat was most common for redeyed vireos (47\%) and wood thrush (42\%) and the least frequent direction among indigo buntings (12\%) and Swainson's thrush (29\%). Southbound departures over the Gulf by advancing individuals were most frequent for Swainson's thrush (38\%) and the least frequent direction in red-eyed vireos (16\%) and ruby-throated hummingbirds (10\%; Figure 2).

Considering an individual's fat score in relation to departure decisions, fewer than 10% of those individuals with lower fat stores (scored 1-3) advanced south over the Gulf of Mexico. The majority of individuals with lower fat scores (03) detoured (48-58\%), followed closely by retreating (37-45\%). The majority of individuals (41%) with a fat score of 4 also detoured, followed by fairly similar numbers advancing (31\%) and retreating (28\%). Almost half of individuals with the highest fat score (5) advanced over the Gulf of Mexico (47\%) and less than a quarter retreated towards interior sites (22\%; Figure 3).

Comparing Retreating to Advancing

We tested the prediction of our second hypothesis by comparing behaviors of feeders retreating from our edge site to flyers advancing from our
inland site. Retreating individuals departed the edge site earlier in the day (1.60 \pm 1.75 hours after evening civil twilight, $n=42$) than when advancing from the interior site (2.51 ± 1.20 hours after civil twilight, $n=20$; repeated measures approach: $\mathrm{t}=-4.076, \mathrm{df}=19, \mathrm{p}$-value <0.001; independent samples approach: t $=-4.129$, df $=23.797, p$-value <0.001), although departures from the edge site showed more variation compared to interior departures. Moreover, half of the interior-departing individuals included in the analysis resumed migration outside of our inland detection areas (likely north of the site; see below), which means they departed earlier in the day than when we detected them on the interior ART network. Between edge and interior ART networks, travel speed was greater for individuals advancing (15.12 $\pm 5.03 \mathrm{~m} / \mathrm{s}, \mathrm{n}=9)$ compared to those retreating $(9.45 \pm 3.65 \mathrm{~m} / \mathrm{s}, \mathrm{n}=34$; repeated measures approach: $\mathrm{t}=-4.633, \mathrm{df}=5, \mathrm{p}$-value $=0.006$; independent samples approach: $t=-3.112, d f=8.431, p$-value $=0.014$; Figure 4). For both retreating and advancing flights, winds were from the south and wind speeds were similar (retreating: $4.65 \pm 2.31 \mathrm{~m} / \mathrm{s}$; advancing: $6.06 \pm$ 2.45; all $p>0.25$). Wind speed and direction results suggest retreating individuals experienced wind assistance, while advancing individuals flew into headwinds at departure. Individuals had a longer stopover duration at interior habitats compared to the edge site in both analyses. In the pairwise analysis, individuals spent significantly less time at the edge site (0.08 ± 0.29 days) compared to interior sites (11.67 ± 4.69 days, $n=12 ; \mathrm{V}=0, \mathrm{p}=0.002$). The independent samples test also showed redetected individuals spent significantly
less time at the edge site $(0.67 \pm 1.96$ days, $n=42)$ compared to interior habitats (11.67 ± 4.96 days, $n=12 ; W=7, p<0.001$). Furthermore, mean stopover duration of all radio-tagged individuals at the edge site was short (1.21 ± 2.62 days, $\mathrm{n}=442$), with most individuals ($82 \% ; \mathrm{n}=362$) departing within 24 hours of capture.

Interior Flights

During 2013 and 2014, we redetected 21% of all tagged individuals which comprised 62% of retreating individuals flying near the interior ART network after departing from the edge site. Wood thrush was the most common species redetected at the inland site (42% of all tagged wood thrushes), whereas we never redetected ruby-throated hummingbirds at the inland site. The remaining species each had $\sim 15-24 \%$ of individuals redetected inland (Table 2). We found that 8 of the 33 redetected individuals landed and stopped over in the detection area of our inland receivers: one indigo bunting, two red-eyed vireos, and five wood thrushes (examples of wood thrush movements illustrated in Figure 1B). Based on the 8 individuals that landed in the inland detection area, the average distance from the location where they were tagged was $57.4 \mathrm{~km}(\pm 9.43 \mathrm{~km}$; range: $45-70 \mathrm{~km}$) and the individuals that continued north $(\mathrm{n}=27$) likely stopped at least 72 km (i.e., the edge of the detection area) from where they were tagged.

Of the 33 individuals that retreated to stopover at an interior site, we redetected 14 individuals departing south, of which seven individuals departed
locally (within the detection area of the receivers) from bottomland forests; the remaining seven departed from interior habitats outside the detection area. While we found no evidence that the 14 individuals moving south from interior habitats made landfall again near the edge site, 9 individuals were detected aloft passing by the ART network at the edge site. Four of the 14 southbound birds not detected by our ART network on the coast were heading in a west-southwesterly direction when passing the interior ART network and were likely out of range of the coastal ART network. The last southbound individual not redetected, a redeyed vireo, turned sharply to the east and likely passed to the east out of range of the coastal ART network.

Food Abundance

To test our underlying assumption of habitat quality, we compared arthropod and fruit resources between out edge and interior sites. Arthropod biomass was greater at the interior site ($0.17 \pm 0.38 \mathrm{mg} /$ sampling period; $\mathrm{n}=18$) compared to the edge site ($0.05 \pm 0.03 \mathrm{mg} / \mathrm{sampling}$ period; $\mathrm{n}=20$). While the difference in arthropod biomass was not significant ($\mathrm{F}_{1,8}=2.46, \mathrm{p}=0.16,95 \% \mathrm{Cl}$ $=-0.06$ to 0.30), we did find a difference in the magnitude of arthropod biomass between sites ($|\mathrm{g}|=0.44$). The moderate difference in magnitude or effect size suggests that observed values at the interior site are greater despite the large amount of temporal variation at the interior site (range: $0.005-1.560 \mathrm{~g} / \mathrm{sampling}$ period). The number of ripe fruit counted each week was over $3 x$ greater at the
interior site $(43.23 \pm 10.48$ ripe fruit/m) compared to the edge site $(13.04 \pm 4.07$ ripe fruit $/ m ; F_{1,14}=163.33, p<0.0001,95 \% \mathrm{Cl}=1.01$ to 1.41).

Discussion

Departing the Edge

We found partial support of our hypothesis that departure decisions are influenced by species, age, and fat load. As predicted, species of smaller body size (e.g., hummingbirds, buntings, and vireos) and birds in lean condition (fat score <4; Helms and Drury 1960) were more likely to discontinue a direct route to the migratory destination. Age was not important in explaining flight direction, despite the tight interplay typically found between age and foraging efficiency (Gauthreaux 1978, Burger 1988, Wunderle 1991, Woodrey 2000, but see Moore et al. 2003). Despite smaller-bodied species having higher fuel deposition rates (Lindström 2003) and the ability to carry more fat relative to their fat-free mass (Hedenström and Alerstam 1992), they are more affected by turbulent conditions aloft (e.g., Ravi et al., 2015) and have higher metabolic costs (Vogel 1988) that reduce their margin of safety during long flights over large geographic features. This trade-off may explain why smaller-bodied species are more selective when attempting to advance from edge habitats or detour around the perceived barrier (Deppe et al. 2015, Zenzal et al. 2018a). While we know detouring individuals discontinued the direct route to their migratory destination when departing the edge site, tracking whether they made additional stopovers within the landscape
or resumed migratory flight by circumventing the Gulf of Mexico is beyond the scope of our study.

Regardless of departure direction, most individuals left our edge site within 24 hours of capture and, with our underlying assumption of less food at edge sites confirmed, individuals seeking to replenish energy stores would be more food limited and likely face increased competitor and predation pressure if remaining on the coast (Moore and Yong 1991, Aborn 1994, Woodrey and Moore 1997, Kelly et al. 2002, Cimprich et al. 2005, Cimprich and Moore 2006, Moore et al. 2017, Zenzal and Moore 2019). A third of the departing individuals engaged in retreating movements consistent with locating more suitable stopover habitat, based on our food data - a behavior associated with the feeding state. This finding is similar to other studies where migrants stop at the edge of an inhospitable landscape and retreat instead of advancing (Baird and Nisbet 1960, Alerstam 1978, Woodworth et al. 2014, Nilsson and Sjöberg 2016), and it is assumed that retreating individuals were unable to meet the necessary departure fuel load to resume migration. Our ART network confirms that individuals in a feeding state retreated to interior habitats with greater forest cover and food resources (Buler et al. 2007; this study), as well as presumably lower predation risk (sensu Lindström, 1990). While retreating over 45 km from the coast to another unfamiliar stopover site may result in extra energy expenditure and uncertainty compared to remaining at the current site, for lean individuals, the
cost appears to be outweighed by successful transition to the flyer state and associated advancing flight that we observed.

Advancing versus Retreating Flights

The positioning of our ART network allowed us to test the prediction of our second hypothesis by directly comparing the decisions of birds retreating to interior habitats and then advancing after presumably refueling (i.e., transition from feeding to flying). We detected differences in departure time, stopover duration, and travel speed as hypothesized between retreating and advancing migrants. While stopover duration and travel speed were in the predicted direction, departure time results were opposite of what we expected. This may be an artifact of processing departures from edge sites versus interior sites. All retreating individuals departed from known locations within our detection area, whereas half the individuals advancing from inland sites departed outside the detection area and were detected when already aloft. Individuals retreating inland showed greater variation in departure time and may be flexible in departure time since they are moving a relatively short distance (45-72+ km) that may take 2-3 hours based on our calculated travel speeds, as opposed to advancing over the Gulf of Mexico for a sustained flight of $1,000 \mathrm{~km}$ lasting an average of 22 hours (Deppe et al. 2015). Given the more demanding flight, birds advancing and engaging in trans-Gulf flights should show higher consistency in departure times to take advantage of orientation cues available at twilight and nocturnal flight conditions (Kerlinger and Moore 1989, Newton 2008, Schofield et al. 2018a).

While individuals retreated from our edge site shortly after arrival, they spent an average of 11 days at the higher-quality inland site presumably refueling and waiting for appropriate atmospheric conditions (Able 1973, Richardson 1978, Åkesson and Hedenström 2000, Liechti 2006, Buler et al. 2007, Shamoun-Baranes and van Gasteren 2011, Deppe et al. 2015, Bolus et al. 2017). The contrast in stopover duration between locations supports the hypothesis that migrants unable to refuel at a stopover site will quickly leave, while those gaining mass should remain until they achieve the necessary departure fuel load to be in the flyer state (Mehlman et al. 2005, Schaub et al. 2008). For example, thrushes in our study tended to be fairly inactive at the edge site, did not significantly gain mass, and departed the day of first capture - an indication they are likely not foraging and attempting to reduce the threat of predation in the open coastal habitat (Woodrey and Moore 1997, Cimprich et al. 2005, Cimprich and Moore 2006, Schofield et al. 2018b). The longer stopovers at interior sites paired with advancing departures suggests that thrushes were able to change their condition and internal state by taking advantage of the greater food abundance and presumably lower competition and predation pressure.

In addition to longer stopover durations, retreating migrants exhibited slower travel speeds despite generally experiencing supportive tailwinds, which is consistent with the feeder state. When migrants resume migration, they should not respond to habitat quality or resource availability (Dingle 1996, Chernetsov 2006, Cohen et al. 2012). Migrants retreating from edge habitats had slower
travel speeds compared to when they later advanced from interior habitats toward the Gulf of Mexico (see also Bruderer and Liechti 1998, Nilsson and Sjöberg 2016). While it may seem surprising that advancing migrants flew into headwinds, this has been found previously for Swainson's thrush departing from our edge site (see Bolus et al. 2017). Typically, those advancing should make decisions aloft to maximize a successful trans-Gulf flight, such as selecting altitudes that reduce time and energy expenditure, as opposed to retreating, which should focus on identifying high-quality stopover habitat by flying slower, at lower altitudes to seek and assess habitats (Cochran and Kjos 1986, Kerlinger and Moore 1989).

Conclusion

The ability for migrating birds to stop en route and locate habitat where they can quickly transition from feeders to flyers is critical for a successful migration. In our study, most migrants stopping along the edge of the Gulf of Mexico departed shortly after arrival but discontinued the direct route to the migratory destination. A third of the tagged individuals did not appear to find the resources needed to resume migration and instead relocated a considerable distance inland before advancing. Based on our observations, retreating individuals were likely able to relocate to relatively higher quality habitat and subsequently advance across the Gulf of Mexico after a substantial stopover duration. Nearly half of the tagged individuals departed our edge site parallel to the coast, but it is not clear if detouring individuals are selecting to feed, resume
migratory flight, or employ an intermediate strategy (i.e., fly and forage). The decision-making process we observed occurs throughout the migratory period based on the circumstances and conditions migrants experience, yet the context of being at the edge of an expansive, inhospitable landscape causes the decision-making process to carry greater consequences given that a miscalculation could be fatal (Ward et al. 2018).

Speculations

We suspect the feederfflyer dichotomy influenced behaviors we did not measure, and was influenced by weather conditions and migration timing:

- We hypothesize that the individuals in this study also displayed differences in foraging behavior, daytime sleep, and general activity consistent with the feeder/flyer dichotomy. We predict that flyers foraged less and were risk averse if foraging, slept more during the day, and were less active (i.e., sit and wait to advance) compared to feeders.
- Prevailing weather conditions are known to influence departure decisions, including in our system, and likely adds a consequential circumstance to the feeder/flyer dichotomy. While individuals advancing from the interior site generally flew into headwinds upon departure, we suspect longer stopover durations at the interior site could also be due to some individuals attempting to await favorable weather conditions - delaying the transition from feeder to flyer.
- A migrant's spatiotemporal context can influence decisions (e.g., a late bird minimizing time) and circumstances (e.g., more favorable weather later in the season). We hypothesize that we would see less retreating movements and other behaviors associated with feeders later in the season compared to earlier in the season as migrants may need to minimize time as en route resources diminish.

Declarations

We thank the 2009-2014 Fort Morgan and Top of the Bay field technicians, radio tower crews, and members of the USM Migratory Bird Research Group for assistance in the field. We appreciate assistance with telemetry aspects of the project from L. Schofield, E. Swenson, W. Cochran, and J. Cochran. We also thank the Bon Secour National Wildlife Refuge, Alabama Department of Natural Resources Division of Wildlife and Freshwater Fisheries, Fort Morgan Historic Site, and Gulf State Park for permission to access their properties. We are especially grateful to K. Pardieck, members of the Ward/Brawn lab at UIUC, and anonymous journal reviewers for helpful comments on the manuscript. The University of Southern Mississippi, University of Illinois at Urbana-Champaign, University of Delaware, and Eastern Illinois University provided support, computing time, and copy services. This work was supported by the National Science Foundation (Division of Integrative Organismal Systems Awards 1146832, 1147096, 1145952, and 1147022; GK-12 0947944); the National Geographic Society Committee on Research and Exploration (Awards 8971-11
and 9155-12); the Birmingham Audubon Society; the Alabama Ornithological Society; the Wilson Ornithological Society; the Louisiana Ornithological Society; the Eastern Bird Banding Association; the American Ornithologists' Union; the U.S. Army Construction Engineering Research Laboratory, and the NOAA RESTORE Act Science Program (NA17NOS4510092). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Data Accessibility Statement

Data presented in this paper will be uploaded to the University of Illinois Databank upon acceptance.

Literature Cited

Abdollahi, K. K. et al. 2005. Urban forest ecosystem structure and the function of the gulf coastal communities in the United States. - In: Tiezzi, E. et al. (eds), Ecosystems and Sustainable Development V. Southampton, pp. 605-614.

Able, K. P. 1973. The role of weather variables and flight direction in determining the magnitude of nocturnal bird migration. - Ecology 54: 1031-1041.

Aborn, D. A. 1994. Correlation between raptor and songbird numbers at a migratory stopover site. - The Wilson Bulletin: 150-154.

Agostini, N. 2004. Additional observations of age-dependent migration behaviour in western honey buzzards Pernis apivorus. - Journal of Avian Biology 35: 469-470.

Åkesson, S. 1999. Do passerine migrants captured at an inland site perform temporary reverse migration in autumn? - Ardea 87: 129-137.

Åkesson, S. and Hedenström, A. 2000. Wind selectivity of migratory flight departures in birds. - Behav Ecol Sociobiol 47: 140-144.

Åkesson, S. et al. 1996. Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. - Behav Ecol Sociobiol 38: 293-302.

Alerstam, T. 1978. Reoriented bird migration in coastal areas: dispersal to suitable resting grounds? - Oikos 30: 405-408.

Alerstam, T. 2011. Optimal bird migration revisited. - Journal of Ornithology 152: 5-23.

Alerstam, T. and Lindström, Å. 1990. Optimal Bird Migration: The Relative Importance of Time, Energy, and Safety. - In: Gwinner, P. D. E. (ed), Bird Migration. Springer Berlin Heidelberg, pp. 331-351.

Baird, J. and Nisbet, I. C. T. 1960. Northward fall migration on the Atlantic coast and its relation to offshore drift. - Auk 77: 119-149.

Bairlein, F. 1995. Manual of field methods, European-African songbird migration network. - Institut für Vogelforschung/ Vogelwarte Helgoland.

Bolus, R. T. et al. 2017. Swainson's Thrushes do not show strong wind selectivity prior to crossing the Gulf of Mexico. - Scientific reports 7: 14280.

Brooks, M. 1952. The Allegheny Mountains as a Barrier to bird movement. - Auk 69: 192-198.

Bruderer, B. and Liechti, F. 1998. Flight behaviour of nocturnally migrating birds in coastal areas: crossing or coasting. - Journal of Avian Biology: 499507.

Buler, J. J. and Moore, F. R. 2011. Migrant-habitat relationships during stopover along an ecological barrier: extrinsic constraints and conservation implications. - J Ornithol 152: 101-112.

Buler, J. J. et al. 2007. A Multi-Scale Examination of Stopover Habitat Use by Birds. - Ecology 88: 1789-1802.

Buler, J. J. et al. 2017. Body mass and wing shape explain variability in broadscale bird species distributions of migratory passerines along an ecological barrier during stopover. - Oecologia 185: 205-212.

Burger, J. 1988. Effects of age on foraging in birds. - Proceedings of the International Ornithological Congress 19: 1127-1140.

Burnham, K. P. and Anderson, D. R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. - Springer.

Carlisle, J. D. et al. 2004. Habitat Associations, Relative Abundance, and Species Richness of Autumn Landbird Migrants in Southwestern Idaho. The Condor 106: 549-566.

Chernetsov, N. 2006. Habitat selection by nocturnal passerine migrants en route: mechanisms and results. - J Ornithol 147: 185-191.

Chernetsov, N. 2012. Passerine Migration: Stopovers and Flight. - Springer Science \& Business Media.

Cimprich, D. A. and Moore, F. R. 2006. Fat affects predator-avoidance behavior in Gray Catbirds (Dumetella carolinensis) during migratory stopover. - The Auk 123: 1069-1076.

Cimprich, D. A. et al. 2005. Passerine migrants respond to variation in predation risk during stopover. - Animal Behaviour 69: 1173-1179.

Cimprich, D. A. et al. 2018. Red-eyed Vireo (Vireo olivaceus). - In: Rodewald, P. G. (ed), The Birds of North America Online. 2nd ed.n. Cornell Lab of Ornithology, in press.

Cochran, W. W. and Kjos, C. G. 1986. Wind drift and migration of thrushes: A telemetry study. - Illinois Natural History Bulletin 33: 297-330.

Cohen, E. B. et al. 2012. Experimental Evidence for the Interplay of Exogenous and Endogenous Factors on the Movement Ecology of a Migrating Songbird. - PLOS ONE 7: e41818.

Cohen, E. B. et al. 2014. Fuel stores, time of spring, and movement behavior influence stopover duration of Red-eyed Vireo Vireo olivaceus. - Journal of Ornithology 155: 785-792.

Covino, K. M. and Cooney, B. 2015. Daytime sleeping behavior observed in a Black-and-white Warbler during spring stopover. - Animal Migration 2: 4446.

DeGraaf, R. M. and Rappole, J. H. 1995. Neotropical Migratory Birds: Natural History, Distribution, and Population Change. - Cornell University Press.

Deppe, J. L. et al. 2015. Fat, weather, and date affect migratory songbirds' departure decisions, routes, and time it takes to cross the Gulf of Mexico. PNAS 112: E6331-E6338.

Dingle, H. 1996. Migration: The Biology of Life on the Move. - Oxford University Press.

Dossman, B. C. et al. 2016. The effects of wind and fuel stores on stopover departure behavior across a migratory barrier. - Behavioral Ecology 27: 567-574.

Dossman, B. C. et al. 2018. An experimental examination of the influence of energetic condition on the stopover behavior of a Nearctic-Neotropical migratory songbird, the American Redstart (Setophaga ruticilla). - Auk 135: 91-100.

Erni, B. et al. 2003. How does a first year passerine migrant find its way? Simulating migration mechanisms and behavioural adaptations. - Oikos 103: 333-340.

Evans, M. et al. 2011. Wood Thrush (Hylocichla mustelina). - In: Poole, A. F. (ed), The Birds of North America Online. 2nd ed.n. Cornell Lab of Ornithology, in press.

Ferretti, A. et al. 2019. The amount of available food affects diurnal locomotor activity in migratory songbirds during stopover. - Sci Rep 9: 1-9.

Fox, J. and Weisberg, S. 2011. An R companion to applied regression. - Sage.
Gauthreaux, S. A. 1978. The Ecological Significance of Behavioral Dominance. In: Bateson, P. P. G. and Klopfer, P. H. (eds), Social Behavior. Perspectives in Ethology. Springer US, pp. 17-54.

Groebbels, F. 1928. Zur Physiologie des Vogelzuges. - Verhandlungen der Ornithologischen Gesellschaft in Bayern 18: 44-74.

Hake, M. et al. 2003. Age-dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. - Oikos 103: 385-396.

Hedenström, A. and Alerstam, T. 1992. Climbing Performance of migrating birds as a basis for estimating limits for fuel-carrying capacity and muscle work. - Journal of Experimental Biology 164: 19-38.

Helms, C. W. and Drury, W. H. 1960. Winter and migratory weight and fat field studies on some North American buntings. - Bird-Banding 31: 1-40.

Johnson, M. D. and Strong, A. M. 2000. Length-weight relationships of Jamaican arthropods. - Entomological News 111: 270-281.

Kelly, J. F. et al. 2002. Density-dependent mass gain by Wilson's Warblers during stopover. - The Auk 119: 210-213.

Kemp, M. U. et al. 2012. Quantifying flow-assistance and implications for movement research. - Journal of Theoretical Biology 308: 56-67.

Kerlinger, P. and Moore, F. R. 1989. Atmospheric structure and avian migration. In: Current ornithology. Springer, pp. 109-142.

Lain, E. J. et al. 2017. Songbirds are resilient to hurricane disturbed habitats during spring migration. - Journal of Avian Biology 48: 815-826.

Liechti, F. 2006. Birds: blowin'by the wind? - Journal of Ornithology 147: 202211.

Lindström, Å. 1990. The role of predation risk in stopover habitat selection in migrating bramblings, Fringilla montifringilla. - Behav Ecol 1: 102-106.

Lindström, Å. 2003. Fuel deposition rates in migrating birds: causes, constraints and consequences. - In: Berthold, P. et al. (eds), Avian migration. Springer-Verlag, pp. 307-320.

Mack, D. E. and Yong, W. 2000. Swainson's Thrush (Catharus ustulatus). - In: Rodewald, P. G. (ed), The Birds of North America. 2nd ed.n. Cornell Lab of Ornithology, in press.

Mazerolle, M. J. 2017. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.1-1.

Mehlman, D. W. et al. 2005. Conserving stopover sites for forest-dwelling migratory landbirds. - The Auk 122: 1281-1290.

Mills, A. M. et al. 2011. Passerines use Nocturnal Flights for Landscape-Scale Movements during Migration Stopover. - The Condor 113: 597-607.

Moore, F. R. 1987. Sunset and the orientation behaviour of migrating birds. Biological Reviews 62: 65-86.

Moore, F. R. 2018. Biology of landbird migrants: a stopover perspective. - The Wilson Journal of Ornithology 130: 1-12.

Moore, F. R. and Yong, W. 1991. Evidence of food-based competition among passerine migrants during stopover. - Behavioral Ecology and Sociobiology 28: 85-90.

Moore, F. R. and Kerlinger, P. 1992. Nocturnality, long-distance migration, and ecological barriers. - Proceedings of the 20th International Ornithological Congress 1990: 1122-1129.

Moore, F. R. and Aborn, D. A. 2000. Mechanisms of en route habitat selection: How do migrants make habitat decisions during stopover? - Studies in Avian Biology 20: 34-42.

Moore, F. R. et al. 2003. Priority Access to Food in Migratory Birds: Age, Sex and Motivational Asymmetries. - In: Berthold, P. D. P. et al. (eds), Avian Migration. Springer Berlin Heidelberg, pp. 281-292.

Moore, F. R. et al. 2017. Effect of fuel deposition rate on departure fuel load of migratory songbirds during spring stopover along the northern coast of the Gulf of Mexico. - J Avian Biol 48: 123-132.

National Oceanic and Atmospheric Administration, Office for Coastal Management 2010. 2010 C-CAP Regional Land Cover. - In: Coastal Change Analysis Program (C-CAP) Regional Land Cover. NOAA Office for Coastal Management, in press.

Németh, Z. 2009. Observation of daytime sleep-like behavior in a migratory songbird during stopover. - wils 121: 644-646.

Newton, I. 2008. The Migration Ecology of Birds. - Academic Press.
Nilsson, C. and Sjöberg, S. 2016. Causes and characteristics of reverse bird migration: an analysis based on radar, radio tracking and ringing at Falsterbo, Sweden. - Journal of Avian Biology 47: 354-362.

Packmor, F. et al. 2020. Stopover departure decisions in songbirds: do longdistance migrants depart earlier and more independently of weather conditions than medium-distance migrants? - Mov Ecol 8: 6.

Payne, R. B. 1992. Indigo Bunting (Passerina cyanea). - In: Poole, A. et al. (eds), The Birds of North America Online. 2nd ed.n. Cornell Lab of Ornithology, in press.

Pinheiro, J. et al. 2018. nlme: Linear and Nonlinear Mixed Effects Models. - The R Foundation for Statistical Computing, Vienna http://cran. r-project. org

Pyle, P. 1997. Identification guide to North American birds: Columbidae to Ploceidae. - Slate Creek Press.

R Core Team 2018. R: A language and environment for statistical computing. - R Foundation for Statistical Computing.

Rappole, J. H. and Warner, D. W. 1976. Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 26: 193-212.

Ravi, S. et al. 2015. Hummingbird flight stability and control in freestream turbulent winds. - Journal of Experimental Biology 218: 1444-1452.

Richardson, W. J. 1978. Timing and amount of bird migration in relation to weather: a review. - Oikos: 224-272.

Sandberg, R. and Moore, F. R. 1996. Migratory orientation of red-eyed vireos, Vireo olivaceus, in relation to energetic condition and ecological context. Behavioral Ecology and Sociobiology 39: 1-10.

Sandberg, R. et al. 2002. Orientation of nocturnally migrating Swainson's thrush at dawn and dusk: importance of energetic condition and geomagnetic cues. - The Auk 119: 201-209.

Schaub, M. et al. 2008. Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. - Behav Ecol 19: 657-666.

Schmaljohann, H. and Klinner, T. 2020. A quasi-experimental approach using telemetry to assess migration-strategy-specific differences in the decisionmaking processes at stopover. - BMC Ecology 20: 36.

Schofield, L. N. et al. 2018a. Occurrence of quiescence in free-ranging migratory songbirds. - Behav Ecol Sociobiol 72: 36.

Schofield, L. N. et al. 2018b. Using automated radio telemetry to quantify activity patterns of songbirds during stopover. - Auk 135: 949-963.

Shamoun-Baranes, J. and van Gasteren, H. 2011. Atmospheric conditions facilitate mass migration events across the North Sea. - Animal Behaviour 81: 691-704.

Sjöberg, S. et al. 2015. Weather and fuel reserves determine departure and flight decisions in passerines migrating across the Baltic Sea. - Animal Behaviour 104: 59-68.

Smolinsky, J. A. et al. 2013. Factors influencing the movement biology of migrant songbirds confronted with an ecological barrier. - Behavioral Ecology and Sociobiology 67: 2041-2051.

Strandberg, R. et al. 2009. How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors. - Biology Letters: rsbl20090785.

Strong, A. M. and Sherry, T. W. 2000. Habitat-specific effects of food abundance on the condition of ovenbirds wintering in Jamaica. - Journal of Animal Ecology 69: 883-895.

Taylor, P. D. et al. 2011. Landscape Movements of Migratory Birds and Bats Reveal an Expanded Scale of Stopover. - PLOS ONE 6: e27054.

Torchiano, M. 2017. effsize: Efficient Effect Size Computation. R package version 0.7.1.

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. Springer.

Vogel, S. 1988. Life's Devices: The Physical World of Animals and Plants. Princeton University Press.

Ward, M. P. et al. 2018. Estimating apparent survival of songbirds crossing the Gulf of Mexico during autumn migration. - Proc. R. Soc. B 285: 20181747.

Warnes, G. R. et al. 2018. gmodels: Various R Programming Tools for Model Fitting.

Weidensaul, S. et al. 2019. Ruby-throated Hummingbird (Archilochus colubris). In: Rodewald, P. G. (ed), The Birds of North America Online. 2nd ed.n. Cornell Lab of Ornithology, in press.

Woodrey, M. S. 2000. Age-dependent aspects of stopover biology of passerine migrants. - Studies in Avian Biology 20: 43-52.

Woodrey, M. S. and Moore, F. R. 1997. Age-Related Differences in the Stopover of Fall Landbird Migrants on the Coast of Alabama. - The Auk 114: 695707.

Woodworth, B. K. et al. 2014. Inland flights of young red-eyed vireos Vireo olivaceus in relation to survival and habitat in a coastal stopover landscape. - Journal of avian biology 45: 387-395.

Wunderle, J. M. 1991. Age-specific foraging proficiency in birds. - Current Ornithology 8: 273-324.

Zenzal, T. J. and Moore, F. R. 2016. Stopover biology of Ruby-throated Hummingbirds (Archilochus colubris) during autumn migration. - The Auk 133: 237-250.

Zenzal, T. J. and Moore, F. R. 2019. Resource use and defence by Rubythroated Hummingbirds during stopover. - Behaviour 156: 131-153.

Zenzal, T. J. et al. 2013. Observations of predation and anti-predator behavior of Ruby-throated Hummingbirds during migratory stopover. - Southeastern Naturalist 12: N21-N25.

Zenzal, T. J. et al. 2014. The impact of radio-tags on Ruby-throated Hummingbirds (Archilochus colubris). - The Condor 116: 518-526.

Zenzal, T. J. et al. 2018. Migratory hummingbirds make their own rules: the decision to resume migration along a barrier. - Animal Behaviour 137: 215-224.

Zenzal, T. J. et al. 2018. Fine-scale heterogeneity drives forest use by spring migrant landbirds across a broad, contiguous forest matrix. - The Condor 120: 166-184.

Figure Legends

Figure 1. A) Gulf of Mexico region with study area outlined in black. B) The Mobile Bay region with telemetry tower locations shown. Tower 4 was operated from 2012-2014, Tower 5 from 2013-2014, and Tower 6 in 2014 only. Resource sampling at the inland site occurred near Tower 6. An example of tower tracking is shown by dots indicating the inland flight tracks of three individual wood thrush; red circles: hatch-year, female in lean condition that departed the coastal site on $9 / 25 / 14$, white circles: hatch-year female in fat condition that departed the coastal site on 9/22/14, gold circles: hatch-year female in fat condition that departed the
coastal site on 9/23/14. C) Fort Morgan Peninsula (coastal site) with locations of banding station and telemetry towers shown. Towers 1 and 2 operated from 2009-2014, Tower 3A from 2009-2011, and Tower 3B from 2012-2014. Land cover is based on a modified version of NOAA's Coastal Change Analysis Program land cover atlas (National Oceanic and Atmospheric Administration, Office for Coastal Management 2010).

Figure 2. A) Departure directions of radio-tagged individuals by species from the coastal site on Fort Morgan, AL. Departures are categorized as Detouring (eastwest), Retreating (north), or Advancing (south). Species include ruby-throated hummingbird ($n=52$), indigo bunting ($n=34$), red-eyed vireo ($n=145$), Swainson's thrush $(\mathrm{n}=161)$, and wood thrush $(\mathrm{n}=50)$. B) Circular histograms of departure directions per species, binned to five degrees. Some individuals of each species had departure directions that were not resolved (i.e., range of possible directions within each category: detouring, retreating, or advancing; see text) and were not included in this figure. Species include: Ruby-throated hummingbird ($n=44$), Indigo bunting ($n=34$), Red-eyed vireo ($n=145$), Swainson's thrush ($n=161$), and Wood thrush $(n=50)$.

Figure 3. Departure directions of radio-tagged individuals by fat score from the coastal site on Fort Morgan, AL. Departures are categorized as Detouring (eastwest), Retreating (north), or Advancing (south). Fat scores are based on Helms \& Drury (1960) and include zero ($n=19$), one ($n=45$), two ($n=66$), three ($n=58$), four ($n=127$), and five ($n=127$).

Figure 4. Travel speed of radio-tagged individuals by direction between the coastal site and inland site. Directions include advance (south; $n=9$) and retreat (north, $\mathrm{n}=31$). Central black line indicates median, top and bottom of box indicate interquartile range, and whiskers indicate total range.

Tables

Table1. AICc model selection analysis of departure directions (retreat, detour, or advance) of indigo buntings $(\mathrm{n}=34)$, ruby-throated hummingbirds $(\mathrm{n}=52)$, Swainson's thrush $(n=161)$, wood thrush $(n=50)$, and red-eyed vireo $(n=145)$ from Fort Morgan, Alabama, U.S.A during 2008-2014.

Candidate Model	Wi	Log- likelihood	$\triangle \mathrm{AlCc}$	AICc	K
Species + Fat Score	0.86	-399.51	0.00	823.74	12
Species * Fat Score	0.06	-393.56	5.38	829.12	20
Age + Fat Score + Species	0.06	-397.92	5.39	829.13	16
Age * Fat Score + Species	0.02	-396.78	7.43	831.17	18
Age + Fat Score * Species	0.00	392.05	11.24	834.98	24

Age * Condition *					
Species	0.00	-386.75	28.35	852.09	36
Fat Score	0.00	-441.97	68.30	892.04	4
Age + Fat Score	0.00	-438.41	69.41	893.15	8
Age * Fat Score	0.00	-437.28	71.33	895.06	10
Species + Age	0.00	-433.69	72.63	896.37	14
Species	0.00	-438.33	73.44	897.18	10
Species * Age	0.00	-430.65	79.56	903.30	20
Age	0.00	-469.55	127.56	951.30	6
Null	0.00	-476.73	133.75	957.49	2

Species	Tagged at Fort Morgan	Detection of retreating individuals at interior ART network
Indigo Bunting	10	$2(20 \%)$
Red-eyed Vireo	88	$14(15 \%)$
Ruby-throated Hummingbird	23	$0(0 \%)$
Swainson's Thrush	37	$9(24 \%)$
Wood Thrush	40	$17(42 \%)$

Table 2. The number of individuals radio-tagged at an edge site in Fort Morgan, AL and subsequently detected retreating north of Mobile Bay during 2013 and 2014 by the interior ART network.

Percentages of individuals detected inland provided in parentheses.

